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Abstract.
Power converters are an example of complex systems supporting physical phenomena lo-
cated on very di�erent-sized areas and for very di�erent time scales. One of the goals of
the PEARL Laboratory of Alstom Transport is to provide more e�cient tools for the ther-
momechanical simulation (including plastic deformations and residual stresses) of such
structures. To keep the possibility of modelling the physics of these areas (and not to use
equivalent models such as springs, thermal resistances...), we need to build very large-scale
problems, for which iterative solvers are more suitable.
This paper presents an implementation in C++ of a multigrid method realised on a home
made software object-oriented �nite element program. Di�erent iterative solvers (Jacobi,
Gauss-Seidel) and preconditionners (diagonal, SSOR) are used and di�erent iterating pro-
cesses between coarse(s) and �ne grids are compared (V,W). The method is validated on a
simpli�ed case, showing the advantages in this particular �eld of thermomechanical sim-
ulation in terms of precision and future parallelization (domain decomposition methods
with incompatible grids).
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1 INTRODUCTION

The Alstom-PEARL laboratory, based in the Alstom Transport manufactury of Tarbes,
designs power electronics converters used in railway transport. The goal of this research
laboratory is to design new generations of power converters using new technologies. The
main problems encountered in thermo-mechanical simulation of power converters are the
di�erent space and time scales, leading to large sized problems.

Figure 1: A power electronics converter

One way of research is to build models speci�c to these large scale (multidomains,
multiphysics, multitimes) problems. Therefore, we are interested in multigrid methods.
In this paper, we �rst make a short state of the art in the multigrid domain, then we
present the developments based on a home-made object oriented software; �nally, two
basic test cases are validated.

2 MULTIGRID SOLVERS BASIC PRINCIPLES

2.1 Iterative solvers

Most of Finite Element solvers use iterative methods. The best interest of these nu-
merical methods is to solve large scale problems more e�ciently than direct methods:
instead of inverting the system related to the discretized problem (on a given domain of
study), the solution vector is built step by step following an iterative scheme (Jacobi,
Gauss-Seidel, Conjugate Gradient,...).

2.1.1 Jacobi iterative method

If we consider a problem discretized using a Finite Element method, the �nal numerical
form is usually:

Ax = b (1)
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We can decompose the A matrix into three matrices: U , D and L, so that:

A = U + D + L (2)

For each iteration n, equation (1) becomes:

Axn = b (3)

The Jacobi iterative method sets:

Dxn+1 = b− (U + L)xn (4)

and so:
xn+1 = D−1b−D−1(U + L)xn (5)

2.1.2 Gauss-Seidel iterative method

Starting from the same equation (1), the Gauss-Seidel iterative method sets:

(D + U)xn+1 = b− Lxn (6)

and so:
xn+1 = (D + U)−1b− (D + U)−1Lxn (7)

2.1.3 Conjugate Gradient iterative method

Beginning with the same equation (1), the Conjugate Gradient method [3] sets:

xn+1 = xn + αnpn (8)

where αn is a parameter depending on A, on the residual vector rn (which is de�ned by
rn = b− Axn) and on the descent direction pn. The parameter αn is given by:

αn =
pnT

rn

pnT Apn
(9)

The descent direction is given by:

pn = rn +
‖rn‖2

‖rn−1‖2pn−1 (10)
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2.2 Possible improvements for iterative solvers: preconditionners

One way to improve the convergence of the solution is to introduce preconditionners
in the system [3]. Here, the preconditionner is a square matrix C. The equation (1)
becomes:

CAx = Cb (11)

The aim of using preconditionners is to lead the product CA as close as equal to a
unity square matrix.

• For example, a simple way to �nd a satisfying preconditionner is to set C = D−1,
where D = AI (I is the identity matrix). This preconditionner is therefore the so
called diagonal preconditioner.

• For symmetric matrices, one can use the SSOR preconditionner (Symmetric Succes-
sive Over Relaxation). In this case, the matrix U which is de�ned in equation (2) and
a relaxation parameter ω is introduced by the user (ω ∈]0, 2[). This preconditionner
is de�ned by:

C =
1

ω(2− ω)
[(D − ωU)D−1(D − ωU)T ]−1 (12)

2.3 Multigrid solving principles and strategies

2.3.1 Multigrid methods

The basic principles of these solvers were set in the 1960's years and they were very
improved in the 1970's by A. Brandt [1]. They were commonly developped in �uid me-
chanics to solve large scale problems and today, some commercial softwares still use them.
They also have applications in thermics and solid mechanics. Good states of the art were
made in the beginning of the 1990's by I. D. Parsons and J. F. Hall [5, 6] and P. Wesseling
[7]. One recent french study led by A. Gravouil [2] partially used the multigrid principles.

2.3.2 Multigrid strategies

2.3.2.1 Multigrid basics The real disadvantage of iterative methods is the early
decrease of convergence speed when solving a problem.

One way to improve iterative solvers is to consider two di�erent meshes on a same
domain: one �ne mesh (or �grid�) and one coarse mesh. In fact iterative solvers are quite
skillful in �nding high frequency variations of the solution but use more time to �nd
low frequency variations of the solution. The mean idea is then to solve low frequency
variations of the solution on a coarse mesh and high frequency variations on a �ne mesh
(Figure 2). This principle can be easily extended to more than two meshes.
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Fine mesh

Coarse mesh

Domain

Figure 2: Two grids are superposed on the same spatial domain.

The goal is to solve the problem on the �ne mesh with the help of two grids to increase
the convergence. As shown in �gure 3, the calculation process starts on the �ne grid; after
a number of iterations (generally, the solution has not converged), residuals (rf ) found on
the degrees of freedom of the �ne grid are reported on the nodes of the coarse mesh: this
operation is called �restriction� and is realised with an operator (R) that selects common
degrees of freedom. A set of iterations is then performed on the coarse grid. Results found
on the coarse grid (xc) are interpolated from the coarse grid to build an approximation
of the solution vector on the �ne grid: this is the �prolongation� (P ).

r f 

r  = R r  c f

c c A  x  + r  = bc c f fA  x   + r  = bf f

xc xf 
x  = P x  f c 

Restriction

rc 

Prolongation

Figure 3: Restriction and prolongation between two grids

Starting from this approximation, a new set of iterations is performed on the �ne grid.
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This cycle is repeated until the solution has converged on the �ne grid. This principle
can be extended to more meshes.

2.3.2.2 Building of prolongation and restriction operators The restriction and
prolongation operators are built in order to conserve energy between the meshes [2]. The
prolongation operator P is �rst built by interpolating values from the coarse mesh to the
�ne mesh. To build the restriction operator R, one states the conservation of residual
energy in the two meshes:

xT
c rc = xT

f rf (13)

As shown in �gure 3, this leads to:

xT
c Rrf = xT

c P T rf (14)

and so:
R = P T (15)

2.3.2.3 Strategies for using intermediate meshes With more than two meshes
related to the same domain, we can discern two strategies of changing from one grid to
another one. In the �rst one, called �V-Cycle� , we begin iterations on the �nest grid,
restrict the results on the closest coarser grid, perform iterations, repeat these operations
until no coarser grid remains. Then the results found on the coarsest grid are prolongated
on the closest �ner mesh where a set of iterations are performed; these operations are
repeated upto the �rst grid. The solver performs as many V-Cycles as needed to reach
the convergence.

Restriction
Prolongation

Set of iterations

Fine Grid

Intermediate Grid

Coarse Grid

Start of the calculation End of the calculation

Figure 4: V-Cycles on three grids.

The second strategy, called �W-Cycles�, is a variant of the V-Cycles strategy (see �gure
5 in the case of three grids). As in the precedent strategy, as many �W-Cycles� as needed
are performed to reach the convergence.
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Start of the calculation

Set of iterations
Restriction
Prolongation

End of the calculation

Intermediate Grid

Coarse Grid

Fine Grid

Figure 5: W-Cycles on three grids.

3 IMPLEMENTATION OF MULTIGRID METHODS IN A FINITE ELE-
MENT SOLVER

3.1 The FEM solver DynELA

DynELA is the C++ object oriented �nite element solver developped by the Labora-
toire de Génie de Production (LGP) of the Ecole Nationale d'Ingénieurs de Tarbes (ENIT)
[4]. It was �rst developped as an implicit solver with direct resolution. This implicit solver
is organized around the C++ class �Domain�. It is mainly composed of a list of nodes
and a list of elements. The direct implicit solver is runned on the domain (see �gure 6).

Domain

NodeElement

Figure 6: UML structure of C++ classes before modi�cations.

3.2 New implementations

We introduced a new class called �Grid�. This class gets some attributes of the old
�Domain� class: the list of nodes and the list of elements. The �Domain� class is modi�ed
and is now composed of a list of grids (see �gure 7).

In order to perform multigrid solves with DynELA, we introduced new methods in
�Domain� class. We can discern three main types of new methods that are implemented
in this class:

• Iterative methods: we have implemented di�erent iterative methods : Jacobi, Gauss-
Seidel, Conjugate Gradient. These methods can be selected by the user before
running the calculation.
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Grid

NodeElement

Domain

Figure 7: UML structure of C++ classes after modi�cations.

 = 379 W.m−1.K−1λ
Plate dimensions: 1m x 1m

100 W

Distributed heat flux Fixed temperature

100 °C

Figure 8: First test case.

• Preconditionners: we have implemented two types of preconditionners which are
applied to the regular systems on each grid: Diagonal and SSOR preconditionners;
in the case of the SSOR preconditionner, the value of the coe�cient ω is set to 1.

• Multigrid solvers: the user can choose V-Cycles or W-Cycles strategies to solve
the problem. The multigrid solvers process both thermal and mechanical 2D plane
strain problems.

3.3 Examples of multigrid resolution

3.3.1 Basic test

We �rst tested our program on a simple case: a plate divided in thermal rectangular
elements. This plate is submitted to heat �ux on one side and the temperature is �xed
on the opposite side (see �gure 8).

The mesh has been imported and new grids have been created. We proceeded to
multiple calculations to compare the skewness of the multigrid program with the direct
DynELA implicit solver: di�erent numbers of grids, di�erent precision rate asked.
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The results found on this short example agreed with the well-known analytical solution.
It converges easily and we could ask precisions close to 0,001% without meeting problems
on calculation.

3.3.2 Second test

We built a 2D geometry �guring a plate made of two zones with di�erent thermal con-
ductivities where both boundary conditions are applied: �xed temperature and repartited
thermal �ux (see �gure 9).

800 000 W.mm−1
−1 −1=60 000 W.K .mmλ

−1 −1=100 000 W.K .mmλ

Fixed temperature
20°C

Distibuted heat flux

Plate dimensions: 50 mm x 25 mm

Internal zone dimensions with different thermal conductivity: 10 mm x 10 mm

Figure 9: Second test case.

The direct calculation has been done with the three following thermal implicit solvers:
IDEAS, ABAQUS and DynELA implicit direct solver. The results are presented in �gure
10.
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time : 0.000 ns
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2.35E+01
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Temperature (Kelvins)

DynELA v 0.9.6


Figure 10: Distribution of temperatures in the second test case.

For the multigrid calculation, we �rst imported the mesh, the loads and the bound-
ary conditions de�ned with IDEAS. We tested the di�erent solvers and preconditionners
implemented. As an example, we can see in table the nodal temperatures obtained in
a V-Cycle resolution involving two grids, the Conjugate Gradient iterative method and
the SSOR preconditionner (see table 1). For a demanded precision of 0,7% between the
modules of primal and dual values vectors, the program performed 100 iterations on the
two grids. We compared the results obtained with di�erent solvers.

Node number

Node temperature
obtained with im-
plicit direct solver
(DynELA, IDEAS,
ABAQUS)

Node temperature ob-
tained with DynELA
multigrid solver

Di�erence on node
temperature in %

2 44,82 44,12 -1,57

3 44,94 44,14 -1,57

6 29,50 30,09 1,98

30 39,66 39,94 0,71

Table 1: Comparison of results obtained on four nodes with multigrid and direct solvers.

The small size of the problem does not permit us to conclude about CPU costs. More-
over, the algorithm has not been optimised, so we could not compare it to commercial
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direct solvers.

4 CONCLUSION

The multigrid algorithm we implemented in DynELA is currently extended to three
dimensionnal thermal and mechanical �elds in order to take into account the plastic
behaviour in power electronics converters parts.

In fact, this multigrid method implementation constitute the �rst step in the building
of a multidomain solver in which we could use it to perform calculations on no compatible
meshes and multitime problems (both explicit and implicit subdomains together).
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