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Summary. The development of the computational techniques used in the analyzes of the dy-
namic fracture and their implementation in numerical codes takes a growing importance in last
years. This interest derives from the necessity to predict the localisation of the initiations of
cracks, when and in which direction this crack will propagate throw the material under dy-
namic loads. Several numerical approaches were proposed during few past decades in order
to analyze discontinuous phenomena like cracks and shear bands occurring in structures under
quasi-static or dynamic loads. In this paper we present the numerical implementation of the Ex-
tended Finite Element Method (XFEM), one of the latest approach developed in order to model
the dynamic discontinuities. The crack representation in XFEM is based on the enrichment of
the classical displacement-based finite element approximation through the framework of par-
tition of unity method. In this approach, a crack is modeled introducing additional degrees of
freedom to the nodes whose nodal shape function support intersects this one.The explicit dy-
namic FEM code DynELA developed in the LGP in Tarbes using an object-oriented framework
is used to support the implementation of the XFEM as a new module called DynaCrack.

1 XFEM DESCRIPTION FOR DYNAMIC CRACK ANALYSIS

Several approaches were proposed during last years in the field of computational fracture
methods in order to avoid the re-meshing step in crack modeling. One of them is the eXtended
Finite Element Method (XFEM): a new method based on Partition of Unity framework [1],
developed firstly by Moes and al.[3]. The main idea of this method is that the approximation
space spanned by standard finite element shape function is enriched by products of the standard
basis function with special enrichment functions. Two types of functions were considered for
quasi-static crack growth [3]: the Heaviside step function when the crack completely cuts the
elements and Westergaard-type asymptotic functions for elements containing crack-tips. In our
approach only the Heaviside step function was used for enriching discontinuous fields and the
crack-tip passes from edge to edge. Depending on crack direction, Heaviside functionH takes
the value+1 for the points above the crack and−1 for them below the crack. If the support of
nodal shape function for a node is intersected by a crack, the node is enriched with additional
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degrees of freedom (dof). The discontinuous displacement field for aN nodes mesh, including
N∗ enriched nodes, is approximated by:

uh(X) = ∑
I∈N

φI (X)uI + ∑
I∈N∗

φI (X)H(X)aI (1)

whereφI represent the classical shape functions,uI the classicaldof andaI the enriched ones.
For a domainΩ presenting both classical and enricheddof, the equilibrium discrete equations
for dynamic analysis with XFEM are:[
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where in the global mass and stiffness matrix the mixed and enriched terms are presented
denoted by indexua, au andaa, respectively. The equilibrium equations system2 must be
completed with a crack evolution model providing the answer to three questions: when the
crack advances, in which direction and how far it advances. In our implementation of XFEM
two models are proposed.

The first one is the physical model based on energy release rate calculation. The evaluation
of the the energy release rate is achieved using the far-fields, through the calculation of the
path-independent dynamic J-integral [2] along a contourΓ surrounding the crack-tip:

Jk =
Z

Γ

[
(W+U)nk−σi j

∂ui

∂x1
n j

]
dΓ (3)

whereW andU are the strain and kinetic energy densities respectively, andni is the unit normal
vector toΓ. The value of this integral gives the propagation criterion: the crack will advance if
the current energy release rate exceeds a critical limit. The advancement direction of the crack
is given by:

θc = 2arctan

{
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KI/KII −sign(KII )

√
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2 +8

)}
(4)

whereKM are dynamic stress intensity factors extracted fromJ-integral components. The crack
speed is provided by the numerical propagation algorithm, since the crack-tip advances one
edge at a time.

The second crack evolution model is based on the evaluation of the crack opening displace-
ment (COD) at the crack-tip. The crack will advance when the COD exceed a critical limit
given as a parameter of the cohesive zone. The advancement direction is given by the maxi-
mum circumferential stress criterion.

2 NUMERICAL PROCEDURES FOR XFEM IMPLEMENTATION IN DYNACRACK

The numerical implementation of XFEM is achieved on behalf of the explicit FEM code
DynELA [4] in a new module intended for XFEM, calledDynaCrack. The main numerical
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Figure 1: a) XFEM enriched mesh; b)Partition of a cutted element

Parameter Fine mesh Middle mesh Coarse mesh Abaqus

G
[
J/m2

]
1.18·10−3 1.26·10−3 1.36·10−3 1.23·10−3

KI [Pa
√

m] 1521.7 1617.9 1624.2 1480.4
KII [Pa

√
m] −404.4 −460.9 −493.8 −722.4

Table 1: Fracture parameters values from DynaCrack and Abaqus analysis

algorithms programmed for XFEM implementation inDynaCrack concern the enrichment of
nodes and elements, the partition of cutted elements, assembly procedure of global matrix,
explicit integration of governing equations and crack evolution models.

For introducing the additionaldof, an algorithm was programmed to identify the enriched
nodes and the value of the Heaviside function. In Figure1a the enriched nodes are encircled,
the cutted enriched elements are shaded in dark grey and the others enriched elements (having
at least one enriched node) are shaded in light grey. For the enriched elements, the specifically
algorithms were developed in order to compute the integrating terms as mass and stiffness
matrix, handling variable number ofdof.

Cutted elements impose the partitioning of the integration domaine for the mass and stiffness
matrix using quadrilateral partitions as shown in Figure1b. Computation of the physical crack
evolution model is based on the evaluation of theJ-integral using a square domain around the
crack-tip. The dynamic stress intensity factors are extracted by direct method.

3 VALIDATION EXAMPLE

We consider the cracked panel shown in Figure2a for analysing the mixed-mode fracture.
The reference lengthL = 1m and the distribution tractionσ = 1000Pa. The properties of the
material are:E = 2·1011Pa, ν = 0.3 andρ = 7833kg/m3.

Three different regular meshes were considered: (20x35, 25x44 and 30x53 elements). A
comparison was made with the results obtained by theAbaqus simulation of the same model
with a mesh of 911 elements, aligned with the crack geometry. As one can see in Figure2 b)
and c), the distribution field of von Mises stress is similar for both codes and has the expected
analytically shape. The fracture parameters for mixed mode are presented in Table1.

A quite good agreement was found betweenDynaCrack andAbaqusanalysis for the energy
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Figure 2: Mixed_mode crack problem. a) The geometry of the model; b) DynaCrack von Mises stress distribution;
c) Abaqus von Mises stress distribution;

release rateG and the dynamic stress intensity factorKI . Concerning theKII values, the quite
important differences could be explained by the crack-tip modeling in XFEM with the Heaviside
step function. The displacement field was also compared and the relative difference between
DynaCrack andAbaqusanalysis for the vertical displacements of upper and lower panel edges
are less of 8%.

4 CONCLUSION

The numerical implementation of XFEM in an explicit FEM code has been achieved for
treating dynamic crack propagation. Several algorithm were programmed in order to realise the
crack implementation, the enrichment of mesh, the numerical integration of mass and stiffness
matrix over cutted elements, the explicit integration of governing equation and the implemen-
tation of two crack evolution models. An numerical example involving a mixed-mode fracture
analysis proves the robustness of the implemented algorithms.
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