
Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2005

M. Papadrakakis, E. Oñate and B. Schrefler (Eds)
c©CIMNE, Barcelona, 2005

STRATEGIES FOR A PARALLEL 3D FEM CODE: APPLICATION TO
IMPACT AND CRASH PROBLEMS IN STRUCTURAL MECHANICS

Olivier Pantalé∗ and Serge Caperaa∗

∗Laboratoire Génie de Production - Ecole Nationale d’Ingénieurs de Tarbes
47 av d’Azereix, 65016 Tarbes Cedex, France

e-mail: pantale@enit.fr, web page: http://www.enit.fr/

Key words: Finite Element, Parallelization, OpenMP, Explicit integration scheme, Impact sim-
ulation, SMP computer

Abstract. Crash and impact numerical simulations are now becoming widely used engineering
tools in the scientific community. Nowadays, accurate analysis of large deformation inelastic
problems occurring in impact simulations is extremely important due to the high amount of
plastic flow. Concerning numerical softwares, number of computational algorithms have been
developed in the last years, and their complexity is continuously increasing. With the increasing
size and complexity of the numerical structural models to solve, the analysis tends to be a very
large time and computational resources consuming. Therefore, the growth of the computational
cost has out-placed the computational power of a single processor in recent years. As a con-
sequence, supercomputing involving multiprocessors has become interesting to use for those
intensive numerical applications.

In this paper, some aspects regarding the parallel implementation of the Object-Oriented
explicit Finite Element dynamics code DynELA9, 11 using the well known OpenMP4 standard are
presented. The Object-Oriented programming (OOP) leads to better-structured codes for the
finite element method and facilitates the development, the maintainability and the expandability
of such codes.

In a first part of this paper, an overview of the Finite Element code is presented with some
details concerning the explicit integration scheme, the stable time-step and the internal force
vector computations. In a second part we present some of the parallelization techniques used
to Speedup the code for a Shared Memory Processing architecture using the OpenMP standard.
A benchmark test is used in this part to compare the performance of the different proposed
parallelization methods. Finally, the efficiency and accuracy of the retained implementations
are investigated using a numerical example relative to impact simulation.

1 INTRODUCTION
In this presentation, an Object-Oriented implementation of an explicit Finite Element pro-

gram, dedicated to simulation of impact problems, called DynELA is presented. This code is

1

Olivier Pantalé and Serge Caperaa

developed in the L.G.P. in Tarbes and we refers to Pantalé et al.9, 11, 10 for more details. In this
presentation, we focus on the strategies used to parallelize this FEM code using the OpenMP4

standard.

2 OVERVIEW OF THE FEM CODE
2.1 Basic kinematics

In the current version of the DynELA FEM code, the conservative and constitutive laws
are formulated using an updated Lagrangian formulation in large deformations. Let −→X be the
reference coordinates of a material point in the reference configuration ΩX ⊂ IR3 at time t = 0,
and −→x be the current coordinates of the same material point in the current configuration Ωx ⊂
IR3 at time t. Let F = ∂−→x /∂

−→
X be the deformation gradient. The spatial discretization based

on FEM of the equation of motion leads to the governing equilibrium equation2:

M
••−→x +
−−→
F int(−→x ,

•−→x)−−−→F ext(−→x ,
•−→x) = 0 (1)

where
•−→x is the vector of the nodal velocities and

••−→x the vector of the nodal accelerations, M
is the mass matrix,

−−→
F ext is the vector of the external forces and

−−→
F int the vector of the internal

forces. This equation is completed by the following set of initial conditions at time t = 0:

−→x 0 = −→x (t0);
•−→x 0=

•−→x (t0) (2)

If we use the same form ϕ for the shape and test function, one may obtain the following
expressions for the elementary matrices in equation (1):

M =
∫
Ωx

ρϕT ϕdΩx−−→
F int =

∫
Ωx
∇ϕTσdΩx−−→

F ext =
∫
Ωx

ρϕT−→b dΩx +
∫
Γx

ϕT−→t dΓx

(3)

where ∇ is the gradient operator, superscript T is the transpose operator, Γx is the surface of
the domain Ωx where traction forces are imposed, ρ is the mass density, σ the Cauchy stress
tensor, −→b is the body force vector and −→t is the surface traction force vector.

2.2 Time integration
Solution of the problem expressed by equation (1) is done using an explicit time integration

scheme. This is the most advocated scheme for integrating in the case of impact problems.
Within an explicit algorithm, the elements of the solution at time tn+1 depend only on the
solution of the problem at time tn. Stability conditions associated with this integration scheme
imposes that the time-step size ∆t have be lower than a limit as discussed further. In this work,
we are using the generalized-α explicit scheme proposed by Chung and Hulbert6 who have

2

Olivier Pantalé and Serge Caperaa

extended their implicit scheme to an explicit one. The main interest of this scheme resides in
its numerical dissipation. The time integration is driven by the following relations:

••−→x n+1=
M−1

(−−→
F ext

n −
−−→
F int

n

)
− αM

••−→x n

1− αM

(4)

•−→x n+1=
•−→x n +∆t

[
(1− γ)

••−→x n +γ
••−→x n+1

]
(5)

−→x n+1 = −→x n + ∆t
•−→x n +∆t2

[(
1

2
− β

) ••−→x n +β
••−→x n+1

]
(6)

Numerical dissipation is defined in the above system from the spectral radius ρb ∈ [0.0 :
1.0] conditioning the numerical damping of the high frequency. Setting ρb = 1.0 leads to a
conservative algorithm while ρb < 1.0 introduces numerical dissipation in the scheme. The
three parameters αM , β and γ are linked to the value of the spectral radius ρb by the following
relations:

αM =
2ρb − 1

1 + ρb

; β =
5− 3ρb

(2− ρb) (1 + ρb)
2 ; γ =

3

2
− αM (7)

The time-step ∆t is limited, it depends on the maximal modal frequency ωmax and on the
spectral radius ρb by the following relation:

∆t = γs∆tcrit = γs

Ωs

ωmax

(8)

where γs is a safety factor that accounts for the destabilizing effects of the non-linearities of the
problem and Ωs is defined by:

Ωs =

√√√√ 12(ρb − 2)(1 + ρb)3

ρ4
b − ρ3

b + ρ2
b − 15ρb − 10

(9)

The generalized-α explicit integration flowchart is given by Algorithm 1. In this flowchart,
the two steps 5b and 5f are the most CPU intensive ones. We focus now on some theoretical
aspects of those two steps before presenting some parallelizing methods to apply.

2.2.1 Internal forces computation

According to the decomposition of the Cauchy stress tensor σ into a deviatoric part s =
dev[σ] and an hydrostatic part p, the hypo-elastic stress/strain relation can be written as follow:

5s= C : D;
•
p= Ktr[D] (10)

where
5s is an objective derivative of s, K is the bulk modulus of the material, C is the fourth-

order constitutive tensor and D (the rate of deformation) is the symmetric part of the spatial

3

Olivier Pantalé and Serge Caperaa

Algorithm 1 Flowchart for generalized-α explicit integration

1. Internal matrices computation: N, B, J, det[J]

2. Computation of the global mass matrix M

3. Computation of the vectors
−−→
F int and

−−→
F ext

4. Computation of the stable time-step of the structure

5. Main loop until simulation complete

(a) Computation of the predicted quantities

(b) Computation of the vectors
−−→
F int and

−−→
F ext

(c) Computation of the corrected quantities at tn+1

(d) If simulation complete, go to 6
(e) Internal matrices computation: B, J, det[J]

(f) Computation of the stable time-step of the structure
(g) Go to 5a

6. Output

velocity gradient L =
•
F F−1. In order to integrate equations (10), we adopt the use of elastic-

predictor/plastic-corrector (radial-return mapping) strategy, see for example Refs.2, 13, 14. An
elastic predictor for the stress tensor is calculated according to the Hooke’s law by the following
equation:

ptr
n+1 = pn + Ktr[∆e]; str

n+1 = sn + 2Gdev[∆e] (11)

where G is the Lamé coefficient and ∆e = (1/2)ln[FT F] is the co-rotational natural strain
increment tensor (see Pantalé10) between increment n and increment n + 1. At this point of the
computation, we introduce the von Mises criterion defined by the following relation:

f = σ̄ − σv =

√
3

2
str
n+1 : str

n+1 − σv, (12)

where σv is the current yield stress of the material. If f ≤ 0 then the predicted solution is
physically admissible and the whole increment is assumed to be elastic (sn+1 = str

n+1). If
not, the consistency must be restored using the radial return-mapping algorithm reported in
Algorithm 2.

4

Olivier Pantalé and Serge Caperaa

Algorithm 2 Radial return algorithm for an isotropic hardening flow law

1. Compute the hardening coefficient hn(εvp
n) and the yield stress σv

n(εvp
n)

2. Compute the value of the scalar parameter Γ(1) given by:

Γ(1) =

√sn+1 : sn+1 −
√

2
3
σv

n

2G
(
1 + hn

3G

)

3. Consistency condition loop from k = 1

(a) Compute σv
n+1(ε

vp
n +

√
2
3
Γ(k)) and hn+1(ε

vp
n +

√
2
3
Γ(k))

(b) Compute f = 2G
√

3
2
Γ(k) − σ + σv

n+1 and df = 2G
√

3
2

+
√

2
3
h

(c) If f

σv

n+1

< tolerance go to 4

(d) Update Γ(k+1) = Γ(k) − f/df

(e) k ← k + 1 and go to 3a

4. Update the equivalent plastic strain εvp
n+1 = εvp

n +
√

3
2
Γ(k)

5. Update the deviatoric stress tensor sn+1 = sn − 2GΓ(k) sn√sn:sn

2.2.2 Stable time-step computation

As presented in the time-integration part, the time-step size must be lower than a critical
value as shown in equation (8). In our application, the value of ωmax is evaluated by the power
iteration method proposed by Benson3. A updated version of the corresponding algorithm is
given in Algorithm 3.

3 OBJECT-ORIENTED DESIGN
3.1 Overview of object-oriented programming

We have made the choice to develop the DynELA FEM code using Object-Oriented Pro-
gramming (OOP), because this leads to highly modularized codes through the use of defined
classes, i.e. associations of data and methods. The benefits of OOP to implementations of FEM
programs has already been explored by several authors9, 8, 7, 16. More details concerning the
numerical implementation of the code are given in Pantalé et al.9, 11.

5

Olivier Pantalé and Serge Caperaa

Algorithm 3 Computation of the maximal model frequency

1. Initializations n = 0; x0 = {1, ..., 0, ...,−1}T

2. Computation of the elementary elastic stiffness matrices Ke.

3. Loop over n iterative

(a) Loop over all elements to evaluate x̂n = Kxn on the element level
i. Gather xe

n from global vector xn

ii. x̂e
n = Kexe

n

iii. Scatter of x̂e
n into global vector x̂n

(b) Computation of the Rayleigh Quotient < = xT
n .x̂n

xT
n .M.xn

(c) x̂n+1 = M−1x̂n

(d) fmax = max(x̂n+1)

(e) xn+1 = x̂n+1

fmax

(f) If |fmax−<|
fmax+< ≤ tolerance go to 4

(g) Return to 3a

4. Return the maximal model frequency ωmax =
√

f
max

3.2 Finite element classes
As it can be found in other papers dealing with the implementation of FEM8, 7, 16 we devel-

oped some specific classes for this application (see figure 1). This approach will simplify the
parallelization of the code as we will see later.

4 PARALLELIZATION OF THE CODE
With the growing importance of microprocessor-based architectures using shared-memory

processing (SMP) or distributed-memory processing (DMP) parallelized code has become more
important in the las past years. In SMPs, all processors access the same shared memory as
shown in figure 2, while in DMPs each processor has its own private memory.

The parallelization techniques used in FEM codes can be classified into two categories:

• the first one concerns DMPs where MPI (Message Passing Interface) is well established
as high-performance parallel programming model.

• the second one concerns SMPs computers with the main use of special compiler direc-
tives. The OpenMP4 standard was designed to provide a standard interface in Fortran

6

Olivier Pantalé and Serge Caperaa

Figure 1: Simplified UML diagram of the Object oriented framework

and C/C++ programs for such a parallelization. Hoeflinger et al.5 explored the cause of
poor scalability with OpenMP and pointed out the importance of optimizing cache and
memory utilization in numerical applications.

In this work, we focussed on local parallelization techniques to be applied on some CPU time
consuming subroutines inside the explicit integration main loop of the program. Therefore,
only the internal force vector and the stable time-step computations are parallelized using some
OpenMP parallelization techniques. A Compaq ProLiant 8000 under Linux Redhat 8.0 is used
for developing and evaluating the performances of the parallel code. This one is equipped with 8
Intel Xeon PIII 550/2Mb processors and 5 Gbytes of system memory. Compilation of the code
is done using the Intel C++ 7.1 compiler without any optimization flag in order to compare
various implementations without compiler influence.

As the development platform is a SMPs, the parallelization of DynELA is based on the use
of OpenMP4. The type of parallelism used in OpenMP is sometimes called fork-join parallelism
because we launch multiple parallel threads (fork) in parallel regions of the code and join them
into a single thread (the master one) for serial processing in non-parallel regions as described in

7

Olivier Pantalé and Serge Caperaa

P2

P3

Pn
Shared memory

P1

processorlocal cache memory

Figure 2: Shared-memory processing (SMP) architecture

figure 3. A thread is an instance of the program running on behalf of some user or process.

Slave threads

Master thread

wait

wait

waitthread 2 computation

thread 1 computation

thread 3 computation

thread 4 computation

Serial region Fork Parallel region Join Serial region

Figure 3: Fork-join parallelism

Parallelization with OpenMP can be done automatically, through compiler flags, or manually.
We tested both methods, and as many other authors15, found that the automatic parallelization
of the code leads to very bad Speedup results. Manual parallelizing of the code is achieved by
inserting specific #pragma directives in C/C++ codes. For example:

void buildSystem(List <Elements> elements) {
#pragma omp parallel for

for (int i=0;i<elements.size();i++) {
elements(i).computeMatrices();

}
}

In this example, the #pragma omp parallel for directive instructs the compiler that the next loop
in the program must be forked, and the work must be distributed among available processors.
All of the threads perform the same computation unless a specific directive is introduced within
the parallel region. For parallel processing to work correctly the computeMatrices method must
be thread-safe.

The user may also define parallel region blocks using the #pragma omp parallel directive.
The parallel code section is executed by all threads including the master thread. Some data

8

Olivier Pantalé and Serge Caperaa

environment directives (shared, private...) are used to control the sharing of program variables
that are defined outside the scope of the parallel region. Default value is shared. A private
variable has a separate copy per thread.

The synchronization directives include barrier or critical. A barrier directive causes a thread
to wait until all other threads in the parallel region have reached the barrier. A critical directive
is used to restrict access to the enclosed code to only one thread at a time. This is a very
important point when threads are modifying shared variables.

Of course, this is only a brief overview of the OpenMP directives and we refer to Chandra et
al.4 for further complements.

4.1 Load balancing
In dynamic computations, CPU time/element may vary from one element to an other during

the computation of the plastic corrector because plastic flow occurs in restricted regions of the
structure. As a consequence, the prediction of the CPU time needed for the computation of
the internal force vector

−−→
F int is impossible to do here. Concurrent threads may request quite

different CPU time to complete, leading to wastes of time, because we must wait for the latest
thread to complete before reaching the serial region (see figure 3 where thread 2 is the faster one
and thread 3 the slower one). To avoid such a situation, we developed a dynamic load balance
in order to equilibrate the allocated processors work10.

4.2 Benchmark test used for Speedup measures
4.2.1 Impact of a copper rod

The benchmark test used to to compare the efficiency of the various proposed parallelization
methods is the impact of a copper rod on a rigid wall. A comparison of numerical results
obtained with the DynELA code and other numerical results has already been presented by
Pantalé9. The initial dimensions of the rod are r0 = 3.2mm and l0 = 32.4mm. The impact
is assumed frictionless and the impact velocity is set to Vi = 227m/s. The final configuration
is obtained after 80µs. The constitutive law is elasto-plastic with a linear isotropic hardening.
Material properties corresponding to an OHFC copper are reported in table 1. Only half of the

Young modulus E 117.0 GPa
Poisson ratio ν 0.35
density ρ 8930 kg/m3

initial flow stress σ0
v 400.0 MPa

linear hardening h 100.0 MPa

Table 1: Material properties of the OHFC copper rod for the Taylor test

axisymmetric geometry of the rod has been meshed in the model. Two different meshes are

9

Olivier Pantalé and Serge Caperaa

used with 1000 (10× 100) and 6250 (25× 250) elements respectively. This quite large number
of elements has been choosen to increase the computation time.

4.2.2 Time measures

In an explicit FEM code CPU times are quite difficult to measure. We developed a specific
class called CPUrecord for this purpose. CPU measures are usually done using the standard
time function in C but the problem here is that this one has only a time resolution of ∆t = 10ms.
In this application we use the Pentium benchmarking instruction RDTSC (Read Time Stamp
Counter) that returns the number of clock cycles since the CPU was powered up or reset. On
the used computer, this instruction gives a time resolution of about ∆t = 1

550E+06
' 1.8ns.

4.3 Internal forces computation parallelization
This computation is the most CPU intensive part of the FEM code. To illustrate the use of the

OpenMP parallelization techniques we present in this section four different ways to parallelize
the corresponding block with the influence on the Speedup. In the following example, the
method computeInternalForce is applied on each element of the mesh and returns the internal
force vector resulting from the integration over the element. The gatherFrom operation will
assemble the resulting element internal force vector into the global internal force vector of the
structure. A typical C++ fragment of the code is given as follows:

Vector Fint;
for (int elm = 0; elm < elements.size (); elm++) {

Vector FintElm;
elements(elm).computeInternalForces (FintElm);
Fint.gatherFrom (FintElm, elements(elm));

}

We present here after four different techniques from the simplest to the most complicated one
and compare their efficiency using the 1000 elements mesh.

1. In this first method, we use a parallel for directive for the main loop and share the Fint
vector among the threads. A critical directive is placed just before the gatherFrom oper-
ation because Fint is a shared variable. See figure 4 for the corresponding source code
fragment.

2. In this method, we use a parallel region directive. In this parallel region, all threads access
a shared list of elements to treat until empty. The Fint vector is declared as private. Both
main operations are treated without the need of any critical directive. At the end of the
process, all processors are used together to assemble the locals copies of the Fint vector
into a global one.

10

Olivier Pantalé and Serge Caperaa

Vector Fint; // internal force Vector

// parallel loop base on OpenMP pragma directive
#pragma omp parallel for
for (int elm = 0; elm < elements.size (); elm++)
{
 Vector FintElm; // local internal force Vector

 // compute local internal force vector
 elements(elm).compu teInternalForces (FintElm);

 // gather operation on global internal force vector
#pragma omp critical
 Fint.gath erFrom (FintElm, elements(elm));
} // end of parallel for loop

Figure 4: Source code for the method 1 variant

3. This method is similar to the previous one except that each thread has a predetermined
equal number of elements to treat. Therefore, we avoid the use of a shared list (as in
method 2), each processor operates on a block of elements.

4. This method is similar to the previous one except that we introduce the dynamic load
balance operator presented in section 4.1. See figure 5 for the corresponding source code
fragment.

Table 2 reports some test results. The Speedup factor sp is the ratio of the single-processor CPU
time (Ts) over the CPU time (Tm) obtained with the multi-processor version of the code. The
efficiency ef is the Speedup ratio over the number of processors used (n):

sp =
Ts

Tm

; ef =
sp

n
(13)

Variation in the number of CPU to use is done by specifying this value from the environment
variable OMP_NUM_THREADS. Table 2 shows that this ratio can be over 100%, this case is
usually called Super-linear Speedup. This result comes from the fact that, as a consequence

1 CPU 4 CPU 8 CPU
method time time Speedup efficiency time Speedup efficiency

1 167.30 57.95 2.88 72.2% 57.95 2.88 28.9%
2 163.97 45.98 3.56 89.1% 25.39 6.45 80.7%
3 164.52 42.18 3.90 97.5% 20.86 7.88 98.5%
4 164.25 38.55 4.26 106.5% 19.66 8.35 104.4%

Table 2: Speedup of the
−−→
F

int computation for various implementations

of the dispatching of the work, each processor needs less memory to store the local problem,

11

Olivier Pantalé and Serge Caperaa

jobs.init(elem ents); // list of jobs to do (instance of class Jobs)
int th reads = jobs.getM axTh reads(); // number of threads
Vec tor Fint = 0.0; // internal force Vector
Vec tor FintLoc al[th reads]; // local internal force vectors

// parallel computation of local internal force vectors
#pragm a om p parallel
{
 Elem ent* elem ent;
 J ob* job = jobs.getJ ob(); // get the job for the thread
 int th read = jobs.getTh readNu m (); // get the thread Id

 // loop while exists elements to treat
 wh ile (elem ent = job->next())
 {
 Vec tor FintElm ; // element force vector

 // compute local internal force vector
 elem ent->c om pu teInternalForc es (FintElm);

 // gather operation on local internal force vector
 FintLoc al[th read].gath erFrom (FintElm , elem ent);
 }
 job->waitOth ers(); // compute waiting time for the thread
} // end of parallel region

// parallel gather operation
#pragm a om p parallel for
for (int row = 0; row < Fint.rows(); row++)
{
 // assemble local vectors into global internal force vector
 for (th read = 0; th read < th reads; th read++)
 Fint(row) += FintLoc al[th read](row);
} // end of parallel for loop

// equilibrate the sub-domains
jobs.equ ilibrate();

Figure 5: Source code for the method 4 variant

and cache memory can be used in a more efficient way. If we run the same computation test
with 6250 elements instead of 1000, we obtain an efficiency value of 90% for 8 processors, and
always below 100% for 2 up-to 8 processors. Cache-missing seems to occur in this case. Figure
6 shows a plot of the Speedup versus number of processors. We can see that using method 1
leads to a very bad parallel code especially when the number of processors is greater than 5,
while significant improvement comes with methods 3 and 4. In fact, in method 1, the presence
of a critical directive in the gatherFrom operation leads to a very low Speedup because only one
thread can do this quite CPU intensive operation at a time. In the second method, we also need
a critical directive to pick an element from the global shared list of elements to treat and it costs
CPU time for that. Methods 3 and 4 are the most optimized ones. The dynamic load balance
method is the fastest one whereas it needs some extra code to compute and operate this balance.
Of course this extra time is taken into account in the results presented. Dynamic load balance
improves the efficiency by reducing the waiting time.

12

Olivier Pantalé and Serge Caperaa

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

Sp
ee

d−
up

 v
al

ue

Number of CPU

method 1
method 2
method 3
method 4

Figure 6: Speedup of the
−−→
F

int computation for various implementations

4.4 Time-step computation parallelization
Concerning the parallelization of the time-step computation we measured the CPU times

using the Taylor benchmark test with 6250 elements. An analysis of the CPU times shows that
the two sub-steps (2) and (3a) in Box 3 represents 66.4% and 31.4% of the total computational
time in the Box. Different strategies have been applied to both parts in order to efficiently
parallelize those two steps.

• The one concerning step (2) in Box 3 is quite trivial as the computation of the elastic
stiffness matrices Ke have no dependence from one element to an other one. We apply
here a procedure similar to method 3 in the internal forces vector computation.

• Step (3a) in Box 3 is more complicated to efficiently parallelize as in sub-step (3(a)iii)
we can notice a writing instruction in the shared vector x̂n. We already know that the
use of a critical directive for this operation costs a lot of CPU time. Solution adopted in
this case is to introduce a private vector x̂(i)

n where superscript (i) represents the thread
number and further to collect all vectors x̂(i)

n into a single vector x̂n using an efficient
parallel collecting algorithm.

Figure 7 shows the Speedup versus number of processors for this implementation. Steps (2) and
(3a) present a Super-linear Speedup in the benchmark test used. The so called collecting vectors
step contains sub-steps (3b-3e) and the added step used to collect all local thread vectors x̂(i)

n into
a single vector x̂n. In this step, as the number of processors increases, and therefore the number
of local thread vectors to collect, the CPU time decreases slightly so the over-cost induced from

13

Olivier Pantalé and Serge Caperaa

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

Sp
ee

du
p

va
lu

e

Number of CPU used in the simulation

Initializations
Step (2)

Step (3a)
Collecting vectors

Total

Figure 7: Speedup results for the time-step computation procedure

the collecting operation is compensated by the gain produced by the parallelization of the sub-
steps (3b-3e). The Speedup is around 1.5 for this operation, but we have to notice that this one
only represents 2% of the total computational time for the time-step computation procedure.
Initializations step presents a Speedup below 1, but in this case, it only represents 0.2% of the
computational time. In the presented example, this figure shows a very good total Speedup
close to the ideal Speedup.

5 APPLICATION TO AN IMPACT SIMULATION
In this part, we simulate the impact of a cylindrical projectile into a closed cylindrical tube1.

Only half of the axisymmetric geometry of the structure has been meshed in the model. Ini-
tial mesh is reported on the left side in figure 8. Numerical model contains 1420 four-nodes
quadrilateral elements. Materials of the projectile and the target are different and correspond to
a 42CrMo4 steel and an aluminum 2017T3 respectively. Material properties corresponding to
an isotropic elasto-plastic constitutive law of the form σv = A + Bε̄n are given by Pantalé et
al.12. The projectile weight is m = 44.1gr and the impact speed is Vc = 80m/s. The final con-

projectile target
E 193.6 GPa A 873 MPa E 74.2 GPa A 360 MPa
ν 0.3 B 748 MPa ν 0.33 B 316 MPa
ρ 7800 kg/m3 n 0.23 ρ 2784 kg/m3 n 0.28

Table 3: Material properties of the projectile and the target for the dynamic traction test

14

Olivier Pantalé and Serge Caperaa

DynELA v 1.0.1

time : 0.110 ms

2.60E-01

2.41E-01

2.23E-01

2.04E-01

1.86E-01

1.67E-01

1.49E-01

1.30E-01

1.11E-01

9.28E-02

7.43E-02

5.57E-02

3.71E-02

1.86E-02

0.00E+00

Equivalent plastic strain

DynELA v 1.0.1

Figure 8: Dynamic traction: initial mesh and equivalent plastic strain contour-plot

figuration is obtained after 110µs. Right side in figure 8 shows the equivalent plastic strain εp

contour-plot at the end of the computation. A comparison of the numerical results obtained with
DynELA and Abaqus/Explicit is reported in table 4 and shows a very good level of agreement.

FEM code εp
max final length inner diameter thickness

DynELA 0.260 50.84 mm 10.07 mm 0.857 mm
Abaqus 0.259 50.84 mm 10.08 mm 0.856 mm

Table 4: Comparison of numerical results for the dynamic traction test

Concerning the parallelization of the code, figure 9 shows the general Speedup obtained in
this case. The time-step computation procedure presents a good Speedup near the ideal one,
while the internal force vector computation shows a slight falling off after 6 processors. With
the parallelization of only the time-step computation and the internal force vector computation
procedures, the total Speedup is 5.61 for 8 processors. A more detailed analysis is presented in
Pantalé10.

6 CONCLUSIONS
An object-oriented simulator was developed for the analysis of large inelastic deformations

and impact processes. The parallel version of this code uses OpenMP directives as SMPs pro-
gramming tool. The OpenMP version can also be compiled using non-parallel compiler (the

15

Olivier Pantalé and Serge Caperaa

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

va
lu

e

Number of CPU

Time Step
Internal Forces

Total
ideal

Figure 9: Speedup for the dynamic traction test

pragma directives will be ignored by the compiler). This enforces the portability of the code on
different platforms.

With the increasing prominence of SMPs computers, the importance of the availability of
efficient and portable parallel codes grows. Several benchmark tests have demonstrated the
accuracy and efficiency of the developed software. Concerning the parallel performances, the
examples presented show a good Speedup with this code.

This software is still under development and new features are added continuously. For this
moment, the main development concerns more efficient constitutive laws (including visco-
plasticity and damage effects) and contact laws. Concerning the parallelization of the code,
our efforts are now concentrated on the use of mixed mode MPI/OpenMP parallelization tech-
niques. This will allow us to build a new version of the DynELA code dedicated to clusters of
workstations or PC. For this purpose, sub-domain computations must be introduced in the code.

REFERENCES
[1] H. Abichou, O. Pantalé, I. Nistor, O. Dalverny, and S. Caperaa. Identification of metallic

material behaviors under high-velocity impact: A new tensile test. In 15th Technical
Meeting DYMAT, Metz, 1-2 June 2004.

[2] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Element for Continua and
Structures. Wiley, 2000.

[3] D. J. Benson. Stable time step estimation for multi-material eulerian hydrocodes. Com-
puter Methods in Applied Mechanics and Engineering, 167:191–205, 1998.

16

Olivier Pantalé and Serge Caperaa

[4] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel
Programming in OpenMP. Academic press, 2001.

[5] J. Hoeflinger, P. Alavilli, T. Jackson, and B. Kuhn. Producing scalable performance with
openmp: experimenta with two cfd applications. Parallel Computing, 27:391–413, 2001.

[6] G. M. Hulbert and J. Chung. Explicit time integration for structural dynamics with op-
timal numerical dissipation. Computer Methods in Applied Mechanics and Engineering,
137:175–188, 1996.

[7] R. I. Mackie. Object oriented programming of the finite element method. International
Journal for Numerical Methods in Engineering, 35:425–436, 1992.

[8] G. R. Miller. An object oriented approach to structural analysis and design. Computers
and Structures, 40(1):75–82, 1991.

[9] O. Pantalé. An object-oriented programming of an explicit dynamics code: Application to
impact simulation. Advances in Engineering Software, 33(5):297–306, 5 2002.

[10] O. Pantalé. Parallelization of an object-oriented fem dynamics code: Influence of the
strategies on the speedup. to appear in Advances in Engineering Software, 2005.

[11] O. Pantalé, S. Caperaa, and R. Rakotomalala. Development of an object oriented finite
element program: application to metal forming and impact simulations. Journal of Com-
putational and Applied Mathematics, 168(1-2):341–351, 2004.

[12] O. Pantalé, I. Nistor, and S. Caperaa. Identification et modélisation du comportement des
matériaux metalliques sous sollicitations dynamiques. In Military Technical Academy, ed-
itor, 30th Internationally attended scientific conference of the military technical academy,
ISBN 973-640-012-3, Bucharest, 2003.

[13] J. P. Ponthot. Unified stress update algorithms for the numerical simulation of large de-
formation elasto-plastic and visco-plastic processes. International Journal of Plasticity,
18:91–126, 2002.

[14] J. C. Simo and T. J. R. Hughes. Computational inelasticity. Springer, 1998.

[15] E. L. Turner and H. Hu. A parallel cfd rotor code using openmp. Advances in Engineering
Software, 32:665–671, 2001.

[16] N. Zabaras and A. Srikanth. Using objects to model finite deformation plasticity. Engi-
neering with Computers, 15(Special Issue on Object Oriented Computational Mechanics
Techniques):37–60, 1999.

17

